PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfror-P7.5.RC

Theorem ndnfror-P7.5.RC 878
Description: Inference Form of ndnfror-P7.5 830.
Hypotheses
Ref Expression
ndnfror-P7.5.RC.1 𝑥𝜑
ndnfror-P7.5.RC.2 𝑥𝜓
Assertion
Ref Expression
ndnfror-P7.5.RC 𝑥(𝜑𝜓)

Proof of Theorem ndnfror-P7.5.RC
StepHypRef Expression
1 ndnfror-P7.5.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 ndnfror-P7.5.RC.2 . . . 4 𝑥𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜓)
52, 4ndnfror-P7.5 830 . 2 (⊤ → Ⅎ𝑥(𝜑𝜓))
65ndtruee-P3.18 183 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-or 144  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator