PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrand-P7.4.RC

Theorem ndnfrand-P7.4.RC 877
Description: Inference Form of ndnfrand-P7.4 829.
Hypotheses
Ref Expression
ndnfrand-P7.4.RC.1 𝑥𝜑
ndnfrand-P7.4.RC.2 𝑥𝜓
Assertion
Ref Expression
ndnfrand-P7.4.RC 𝑥(𝜑𝜓)

Proof of Theorem ndnfrand-P7.4.RC
StepHypRef Expression
1 ndnfrand-P7.4.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 ndnfrand-P7.4.RC.2 . . . 4 𝑥𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜓)
52, 4ndnfrand-P7.4 829 . 2 (⊤ → Ⅎ𝑥(𝜑𝜓))
65ndtruee-P3.18 183 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-and 132  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  allnegex-P7-L1  956  allic-P7  1007  exnegallint-P7  1047  qimeqex-P7-L1  1054  qimeqex-P7-L2  1055  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator