| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnfrand-P7.4.RC | |||
| Description: Inference Form of ndnfrand-P7.4 829. † |
| Ref | Expression |
|---|---|
| ndnfrand-P7.4.RC.1 | ⊢ Ⅎ𝑥𝜑 |
| ndnfrand-P7.4.RC.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| ndnfrand-P7.4.RC | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrand-P7.4.RC.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | ndnfrand-P7.4.RC.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | ndnfrand-P7.4 829 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ∧ 𝜓)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∧ wff-and 132 ⊤wff-true 153 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: allnegex-P7-L1 956 allic-P7 1007 exnegallint-P7 1047 qimeqex-P7-L1 1054 qimeqex-P7-L2 1055 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |