| Step | Hyp | Ref
| Expression |
| 1 | | ndnfrv-P7.1 826 |
. . . . . . . 8
⊢ Ⅎ𝑥 𝑦 = (𝑧₁ + 𝑧₂) |
| 2 | 1 | rcp-NDIMP0addall 207 |
. . . . . . 7
⊢ ((𝑧₁ = 𝑡₁ ∧ 𝑧₂ = 𝑡₂) → Ⅎ𝑥 𝑦 = (𝑧₁ + 𝑧₂)) |
| 3 | | nfradd-P8.1 |
. . . . . . . . . . 11
⊢ Ⅎt𝑥 𝑡₁ |
| 4 | | df-nfreet-D8.1 1116 |
. . . . . . . . . . 11
⊢ (Ⅎt𝑥 𝑡₁ ↔
∀𝑧₁Ⅎ𝑥 𝑧₁ =
𝑡₁) |
| 5 | 3, 4 | bimpf-P4.RC 532 |
. . . . . . . . . 10
⊢ ∀𝑧₁Ⅎ𝑥
𝑧₁ = 𝑡₁ |
| 6 | 5 | alle-P7r.RC 993 |
. . . . . . . . 9
⊢ Ⅎ𝑥 𝑧₁ =
𝑡₁ |
| 7 | | nfradd-P8.2 |
. . . . . . . . . . 11
⊢ Ⅎt𝑥 𝑡₂ |
| 8 | | df-nfreet-D8.1 1116 |
. . . . . . . . . . 11
⊢ (Ⅎt𝑥 𝑡₂ ↔
∀𝑧₂Ⅎ𝑥 𝑧₂ =
𝑡₂) |
| 9 | 7, 8 | bimpf-P4.RC 532 |
. . . . . . . . . 10
⊢ ∀𝑧₂Ⅎ𝑥
𝑧₂ = 𝑡₂ |
| 10 | 9 | alle-P7r.RC 993 |
. . . . . . . . 9
⊢ Ⅎ𝑥 𝑧₂ =
𝑡₂ |
| 11 | 6, 10 | ndnfrand-P7.4.RC 877 |
. . . . . . . 8
⊢ Ⅎ𝑥(𝑧₁ =
𝑡₁ ∧ 𝑧₂ = 𝑡₂) |
| 12 | | ndsubaddd-P7.CL 920 |
. . . . . . . . 9
⊢ ((𝑧₁ = 𝑡₁ ∧ 𝑧₂ = 𝑡₂) → (𝑧₁ + 𝑧₂) = (𝑡₁ + 𝑡₂)) |
| 13 | 12 | ndsubeqr-P7.22b 848 |
. . . . . . . 8
⊢ ((𝑧₁ = 𝑡₁ ∧ 𝑧₂ = 𝑡₂) → (𝑦 = (𝑧₁ +
𝑧₂) ↔ 𝑦 = (𝑡₁ +
𝑡₂))) |
| 14 | 11, 13 | ndnfrleq-P7.11 836 |
. . . . . . 7
⊢ ((𝑧₁ = 𝑡₁ ∧ 𝑧₂ = 𝑡₂) → (Ⅎ𝑥 𝑦 = (𝑧₁ + 𝑧₂) ↔ Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂))) |
| 15 | 2, 14 | bimpf-P4 531 |
. . . . . 6
⊢ ((𝑧₁ = 𝑡₁ ∧ 𝑧₂ = 𝑡₂) → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂)) |
| 16 | 15 | rcp-NDIMI2 224 |
. . . . 5
⊢ (𝑧₁ = 𝑡₁ → (𝑧₂ = 𝑡₂ → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂))) |
| 17 | | axL6ex-P7 925 |
. . . . 5
⊢ ∃𝑧₁ 𝑧₁ = 𝑡₁ |
| 18 | 16, 17 | exe-P7r.RC.VR 1003 |
. . . 4
⊢ (𝑧₂ = 𝑡₂ → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂)) |
| 19 | | axL6ex-P7 925 |
. . . 4
⊢ ∃𝑧₂ 𝑧₂ = 𝑡₂ |
| 20 | 18, 19 | exe-P7r.RC.VR 1003 |
. . 3
⊢ Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂) |
| 21 | 20 | axGEN-P7 933 |
. 2
⊢ ∀𝑦Ⅎ𝑥 𝑦 = (𝑡₁ +
𝑡₂) |
| 22 | | df-nfreet-D8.1 1116 |
. 2
⊢ (Ⅎt𝑥(𝑡₁ + 𝑡₂) ↔ ∀𝑦Ⅎ𝑥 𝑦 = (𝑡₁ +
𝑡₂)) |
| 23 | 21, 22 | bimpr-P4.RC 534 |
1
⊢ Ⅎt𝑥(𝑡₁ + 𝑡₂) |