PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfradd-P8

Theorem nfradd-P8 1120
Description: If '𝑥' is ENF in the terms '𝑡₁' and '𝑡₂', then '𝑥' is ENF in the sum term, '(𝑡₁ + 𝑡₂)'.
Hypotheses
Ref Expression
nfradd-P8.1 t𝑥 𝑡₁
nfradd-P8.2 t𝑥 𝑡₂
Assertion
Ref Expression
nfradd-P8 t𝑥(𝑡₁ + 𝑡₂)

Proof of Theorem nfradd-P8
Dummy variables 𝑦 𝑧₁ 𝑧₂ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ndnfrv-P7.1 826 . . . . . . . 8 𝑥 𝑦 = (𝑧₁ + 𝑧₂)
21rcp-NDIMP0addall 207 . . . . . . 7 ((𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂) → Ⅎ𝑥 𝑦 = (𝑧₁ + 𝑧₂))
3 nfradd-P8.1 . . . . . . . . . . 11 t𝑥 𝑡₁
4 df-nfreet-D8.1 1116 . . . . . . . . . . 11 (Ⅎt𝑥 𝑡₁ ↔ ∀𝑧₁𝑥 𝑧₁ = 𝑡₁)
53, 4bimpf-P4.RC 532 . . . . . . . . . 10 𝑧₁𝑥 𝑧₁ = 𝑡₁
65alle-P7r.RC 993 . . . . . . . . 9 𝑥 𝑧₁ = 𝑡₁
7 nfradd-P8.2 . . . . . . . . . . 11 t𝑥 𝑡₂
8 df-nfreet-D8.1 1116 . . . . . . . . . . 11 (Ⅎt𝑥 𝑡₂ ↔ ∀𝑧₂𝑥 𝑧₂ = 𝑡₂)
97, 8bimpf-P4.RC 532 . . . . . . . . . 10 𝑧₂𝑥 𝑧₂ = 𝑡₂
109alle-P7r.RC 993 . . . . . . . . 9 𝑥 𝑧₂ = 𝑡₂
116, 10ndnfrand-P7.4.RC 877 . . . . . . . 8 𝑥(𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂)
12 ndsubaddd-P7.CL 920 . . . . . . . . 9 ((𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂) → (𝑧₁ + 𝑧₂) = (𝑡₁ + 𝑡₂))
1312ndsubeqr-P7.22b 848 . . . . . . . 8 ((𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂) → (𝑦 = (𝑧₁ + 𝑧₂) ↔ 𝑦 = (𝑡₁ + 𝑡₂)))
1411, 13ndnfrleq-P7.11 836 . . . . . . 7 ((𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂) → (Ⅎ𝑥 𝑦 = (𝑧₁ + 𝑧₂) ↔ Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂)))
152, 14bimpf-P4 531 . . . . . 6 ((𝑧₁ = 𝑡₁𝑧₂ = 𝑡₂) → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂))
1615rcp-NDIMI2 224 . . . . 5 (𝑧₁ = 𝑡₁ → (𝑧₂ = 𝑡₂ → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂)))
17 axL6ex-P7 925 . . . . 5 𝑧₁ 𝑧₁ = 𝑡₁
1816, 17exe-P7r.RC.VR 1003 . . . 4 (𝑧₂ = 𝑡₂ → Ⅎ𝑥 𝑦 = (𝑡₁ + 𝑡₂))
19 axL6ex-P7 925 . . . 4 𝑧₂ 𝑧₂ = 𝑡₂
2018, 19exe-P7r.RC.VR 1003 . . 3 𝑥 𝑦 = (𝑡₁ + 𝑡₂)
2120axGEN-P7 933 . 2 𝑦𝑥 𝑦 = (𝑡₁ + 𝑡₂)
22 df-nfreet-D8.1 1116 . 2 (Ⅎt𝑥(𝑡₁ + 𝑡₂) ↔ ∀𝑦𝑥 𝑦 = (𝑡₁ + 𝑡₂))
2321, 22bimpr-P4.RC 534 1 t𝑥(𝑡₁ + 𝑡₂)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   + term-add 4   = wff-equals 6  wff-forall 8  wff-imp 10  wff-and 132  wff-nfree 681  twff-nfreet 1114
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-addl 23  ax-L9-addr 24  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716  df-nfreet-D8.1 1116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator