PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exe-P7r.RC.VR

Theorem exe-P7r.RC.VR 1003
Description: exe-P7r.RC 1002 with variable restriction.

'𝑥' cannot occur in '𝜓'.

Hypotheses
Ref Expression
exe-P7r.RC.VR.1 (𝜑𝜓)
exe-P7r.RC.VR.2 𝑥𝜑
Assertion
Ref Expression
exe-P7r.RC.VR 𝜓
Distinct variable group:   𝜓,𝑥

Proof of Theorem exe-P7r.RC.VR
StepHypRef Expression
1 ndnfrv-P7.1 826 . 2 𝑥𝜓
2 exe-P7r.RC.VR.1 . 2 (𝜑𝜓)
3 exe-P7r.RC.VR.2 . 2 𝑥𝜑
41, 2, 3exe-P7r.RC 1002 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrsucc-P8  1119  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator