| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrsucc-P8 | |||
| Description: If '𝑥' is ENF in a term '𝑡', then '𝑥' is also ENF in its successor, 's‘𝑡'. † |
| Ref | Expression |
|---|---|
| nfrsucc-P8.1 | ⊢ Ⅎt𝑥 𝑡 |
| Ref | Expression |
|---|---|
| nfrsucc-P8 | ⊢ Ⅎt𝑥 s‘𝑡 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrv-P7.1 826 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = s‘𝑧 | |
| 2 | 1 | rcp-NDIMP0addall 207 | . . . . 5 ⊢ (𝑧 = 𝑡 → Ⅎ𝑥 𝑦 = s‘𝑧) |
| 3 | nfrsucc-P8.1 | . . . . . . . 8 ⊢ Ⅎt𝑥 𝑡 | |
| 4 | df-nfreet-D8.1 1116 | . . . . . . . 8 ⊢ (Ⅎt𝑥 𝑡 ↔ ∀𝑧Ⅎ𝑥 𝑧 = 𝑡) | |
| 5 | 3, 4 | bimpf-P4.RC 532 | . . . . . . 7 ⊢ ∀𝑧Ⅎ𝑥 𝑧 = 𝑡 |
| 6 | 5 | alle-P7r.RC 993 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = 𝑡 |
| 7 | ndsubsucc-P7.24a.CL 917 | . . . . . . 7 ⊢ (𝑧 = 𝑡 → s‘𝑧 = s‘𝑡) | |
| 8 | 7 | ndsubeqr-P7.22b 848 | . . . . . 6 ⊢ (𝑧 = 𝑡 → (𝑦 = s‘𝑧 ↔ 𝑦 = s‘𝑡)) |
| 9 | 6, 8 | ndnfrleq-P7.11 836 | . . . . 5 ⊢ (𝑧 = 𝑡 → (Ⅎ𝑥 𝑦 = s‘𝑧 ↔ Ⅎ𝑥 𝑦 = s‘𝑡)) |
| 10 | 2, 9 | bimpf-P4 531 | . . . 4 ⊢ (𝑧 = 𝑡 → Ⅎ𝑥 𝑦 = s‘𝑡) |
| 11 | axL6ex-P7 925 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝑡 | |
| 12 | 10, 11 | exe-P7r.RC.VR 1003 | . . 3 ⊢ Ⅎ𝑥 𝑦 = s‘𝑡 |
| 13 | 12 | axGEN-P7 933 | . 2 ⊢ ∀𝑦Ⅎ𝑥 𝑦 = s‘𝑡 |
| 14 | df-nfreet-D8.1 1116 | . 2 ⊢ (Ⅎt𝑥 s‘𝑡 ↔ ∀𝑦Ⅎ𝑥 𝑦 = s‘𝑡) | |
| 15 | 13, 14 | bimpr-P4.RC 534 | 1 ⊢ Ⅎt𝑥 s‘𝑡 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 s‘term_succ 3 = wff-equals 6 ∀wff-forall 8 Ⅎwff-nfree 681 Ⅎtwff-nfreet 1114 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L9-succ 22 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 df-nfreet-D8.1 1116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |