PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrsucc-P8

Theorem nfrsucc-P8 1119
Description: If '𝑥' is ENF in a term '𝑡', then '𝑥' is also ENF in its successor, 's‘𝑡'.
Hypothesis
Ref Expression
nfrsucc-P8.1 t𝑥 𝑡
Assertion
Ref Expression
nfrsucc-P8 t𝑥 s‘𝑡

Proof of Theorem nfrsucc-P8
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ndnfrv-P7.1 826 . . . . . 6 𝑥 𝑦 = s‘𝑧
21rcp-NDIMP0addall 207 . . . . 5 (𝑧 = 𝑡 → Ⅎ𝑥 𝑦 = s‘𝑧)
3 nfrsucc-P8.1 . . . . . . . 8 t𝑥 𝑡
4 df-nfreet-D8.1 1116 . . . . . . . 8 (Ⅎt𝑥 𝑡 ↔ ∀𝑧𝑥 𝑧 = 𝑡)
53, 4bimpf-P4.RC 532 . . . . . . 7 𝑧𝑥 𝑧 = 𝑡
65alle-P7r.RC 993 . . . . . 6 𝑥 𝑧 = 𝑡
7 ndsubsucc-P7.24a.CL 917 . . . . . . 7 (𝑧 = 𝑡 → s‘𝑧 = s‘𝑡)
87ndsubeqr-P7.22b 848 . . . . . 6 (𝑧 = 𝑡 → (𝑦 = s‘𝑧𝑦 = s‘𝑡))
96, 8ndnfrleq-P7.11 836 . . . . 5 (𝑧 = 𝑡 → (Ⅎ𝑥 𝑦 = s‘𝑧 ↔ Ⅎ𝑥 𝑦 = s‘𝑡))
102, 9bimpf-P4 531 . . . 4 (𝑧 = 𝑡 → Ⅎ𝑥 𝑦 = s‘𝑡)
11 axL6ex-P7 925 . . . 4 𝑧 𝑧 = 𝑡
1210, 11exe-P7r.RC.VR 1003 . . 3 𝑥 𝑦 = s‘𝑡
1312axGEN-P7 933 . 2 𝑦𝑥 𝑦 = s‘𝑡
14 df-nfreet-D8.1 1116 . 2 (Ⅎt𝑥 s‘𝑡 ↔ ∀𝑦𝑥 𝑦 = s‘𝑡)
1513, 14bimpr-P4.RC 534 1 t𝑥 s‘𝑡
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  s‘term_succ 3   = wff-equals 6  wff-forall 8  wff-nfree 681  twff-nfreet 1114
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-succ 22  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716  df-nfreet-D8.1 1116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator