PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubeqr-P7.22b

Theorem ndsubeqr-P7.22b 848
Description: Natural Deduction: Equality Substitution Rule (right).
Hypothesis
Ref Expression
ndsubeqr-P7.22b.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
ndsubeqr-P7.22b (𝛾 → (𝑤 = 𝑡𝑤 = 𝑢))

Proof of Theorem ndsubeqr-P7.22b
StepHypRef Expression
1 ndsubeqr-P7.22b.1 . 2 (𝛾𝑡 = 𝑢)
21subeqr-P5 635 1 (𝛾 → (𝑤 = 𝑡𝑤 = 𝑢))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubeqd-P7  856  ndsubaddd-P7  858  ndsubmultd-P7  859  ndsubeqr-P7.22b.RC  892  ndsubeqr-P7.22b.CL  912  eqtrns-P7  987  nfrsucc-P8  1119  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator