| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndsubeqr-P7.22b | |||
| Description: Natural Deduction: Equality Substitution Rule (right). |
| Ref | Expression |
|---|---|
| ndsubeqr-P7.22b.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| ndsubeqr-P7.22b | ⊢ (𝛾 → (𝑤 = 𝑡 ↔ 𝑤 = 𝑢)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndsubeqr-P7.22b.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | 1 | subeqr-P5 635 | 1 ⊢ (𝛾 → (𝑤 = 𝑡 ↔ 𝑤 = 𝑢)) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: ndsubeqd-P7 856 ndsubaddd-P7 858 ndsubmultd-P7 859 ndsubeqr-P7.22b.RC 892 ndsubeqr-P7.22b.CL 912 eqtrns-P7 987 nfrsucc-P8 1119 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |