PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubeqd-P7

Theorem ndsubeqd-P7 856
Description: Natural Deduction: Equality Substitution Rule (dual).
Hypotheses
Ref Expression
ndsubeqd-P7.1 (𝛾𝑠 = 𝑡)
ndsubeqd-P7.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
ndsubeqd-P7 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑤))

Proof of Theorem ndsubeqd-P7
StepHypRef Expression
1 ndsubeqd-P7.1 . . 3 (𝛾𝑠 = 𝑡)
21ndsubeql-P7.22a 847 . 2 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑢))
3 ndsubeqd-P7.2 . . 3 (𝛾𝑢 = 𝑤)
43ndsubeqr-P7.22b 848 . 2 (𝛾 → (𝑡 = 𝑢𝑡 = 𝑤))
52, 4bitrns-P3.33c 302 1 (𝛾 → (𝑠 = 𝑢𝑡 = 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubeqd-P7.RC  893  ndsubeqd-P7.CL  913
  Copyright terms: Public domain W3C validator