| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndsubeql-P7.22a | |||
| Description: Natural Deduction: Equality Substitution Rule (left). |
| Ref | Expression |
|---|---|
| ndsubeql-P7.22a.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| ndsubeql-P7.22a | ⊢ (𝛾 → (𝑡 = 𝑤 ↔ 𝑢 = 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndsubeql-P7.22a.1 | . 2 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 2 | 1 | subeql-P5 632 | 1 ⊢ (𝛾 → (𝑡 = 𝑤 ↔ 𝑢 = 𝑤)) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: ndsubeqd-P7 856 ndsubeql-P7.22a.RC 891 ndsubeql-P7.22a.CL 911 eqsym-P7 936 example-E7.1a 1074 |
| Copyright terms: Public domain | W3C validator |