PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubeql-P7.22a

Theorem ndsubeql-P7.22a 847
Description: Natural Deduction: Equality Substitution Rule (left).
Hypothesis
Ref Expression
ndsubeql-P7.22a.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
ndsubeql-P7.22a (𝛾 → (𝑡 = 𝑤𝑢 = 𝑤))

Proof of Theorem ndsubeql-P7.22a
StepHypRef Expression
1 ndsubeql-P7.22a.1 . 2 (𝛾𝑡 = 𝑢)
21subeql-P5 632 1 (𝛾 → (𝑡 = 𝑤𝑢 = 𝑤))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  ndsubeqd-P7  856  ndsubeql-P7.22a.RC  891  ndsubeql-P7.22a.CL  911  eqsym-P7  936  example-E7.1a  1074
  Copyright terms: Public domain W3C validator