PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  example-E7.1a

Theorem example-E7.1a 1074
Description: '𝑥' is conditionally not free in the statement '(𝑥𝑦) = 0' when '𝑦 = 0'.

Since no arithmetic axioms have been introduced, we state '(𝑥 ⋅ 0) = 0' as a hypothesis.

Hypothesis
Ref Expression
example-E7.1a.1 (𝑥 ⋅ 0) = 0
Assertion
Ref Expression
example-E7.1a (𝑦 = 0 → Ⅎ𝑥 (𝑥𝑦) = 0)
Distinct variable group:   𝑥,𝑦

Proof of Theorem example-E7.1a
StepHypRef Expression
1 ndnfrv-P7.1 826 . . 3 𝑥 0 = 0
21rcp-NDIMP0addall 207 . 2 (𝑦 = 0 → Ⅎ𝑥 0 = 0)
3 ndsubmultr-P7.24e.CL 922 . . . . 5 (𝑦 = 0 → (𝑥𝑦) = (𝑥 ⋅ 0))
4 example-E7.1a.1 . . . . . 6 (𝑥 ⋅ 0) = 0
54rcp-NDIMP0addall 207 . . . . 5 (𝑦 = 0 → (𝑥 ⋅ 0) = 0)
63, 5eqtrns-P7 987 . . . 4 (𝑦 = 0 → (𝑥𝑦) = 0)
76ndsubeql-P7.22a 847 . . 3 (𝑦 = 0 → ((𝑥𝑦) = 0 ↔ 0 = 0))
87ndnfrleq-P7.11.VR 862 . 2 (𝑦 = 0 → (Ⅎ𝑥 (𝑥𝑦) = 0 ↔ Ⅎ𝑥 0 = 0))
92, 8bimpr-P4 533 1 (𝑦 = 0 → Ⅎ𝑥 (𝑥𝑦) = 0)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  0term_zero 2  term-mult 5   = wff-equals 6  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multr 26  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator