| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnfrleq-P7.11.VR | |||
| Description: ndnfrleq-P7.11 836 with variable restriction. †
'𝑥' cannot occur in '𝛾'. |
| Ref | Expression |
|---|---|
| ndnfrleq-P7.11.VR.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ndnfrleq-P7.11.VR | ⊢ (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrv-P7.1 826 | . 2 ⊢ Ⅎ𝑥𝛾 | |
| 2 | ndnfrleq-P7.11.VR.1 | . 2 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | ndnfrleq-P7.11 836 | 1 ⊢ (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: ndnfrleq-P7.11.RC 882 example-E7.1a 1074 nfreetjust-P8 1115 |
| Copyright terms: Public domain | W3C validator |