PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfreetjust-P8

Theorem nfreetjust-P8 1115
Description: Justification Theorem for df-nfreet-D8.1 1116.

'𝑦' and '𝑧' are distinct from all other variables.

Assertion
Ref Expression
nfreetjust-P8 (∀𝑦𝑥 𝑦 = 𝑡 ↔ ∀𝑧𝑥 𝑧 = 𝑡)
Distinct variable groups:   𝑡,𝑦,𝑧   𝑥,𝑦,𝑧

Proof of Theorem nfreetjust-P8
StepHypRef Expression
1 ndsubeql-P7.22a.CL 911 . . 3 (𝑦 = 𝑧 → (𝑦 = 𝑡𝑧 = 𝑡))
21ndnfrleq-P7.11.VR 862 . 2 (𝑦 = 𝑧 → (Ⅎ𝑥 𝑦 = 𝑡 ↔ Ⅎ𝑥 𝑧 = 𝑡))
32cbvall-P7.VR12of2 1064 1 (∀𝑦𝑥 𝑦 = 𝑡 ↔ ∀𝑧𝑥 𝑧 = 𝑡)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator