| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > df-nfreet-D8.1 | |||
| Description: Definition of Effictive
Non-Freeness in a Term, 'Ⅎt𝑥 𝑡'.
'𝑦' is distinct from all other variables. |
| Ref | Expression |
|---|---|
| df-nfreet-D8.1 | ⊢ (Ⅎt𝑥 𝑡 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝑡) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | term-t | . . 3 term 𝑡 | |
| 2 | objvar-x | . . 3 objvar 𝑥 | |
| 3 | 1, 2 | wff-nfreet 1114 | . 2 wff Ⅎt𝑥 𝑡 |
| 4 | objvar-y | . . . . . 6 objvar 𝑦 | |
| 5 | 4 | term-obj 1 | . . . . 5 term 𝑦 |
| 6 | 5, 1 | wff-equals 6 | . . . 4 wff 𝑦 = 𝑡 |
| 7 | 6, 2 | wff-nfree 681 | . . 3 wff Ⅎ𝑥 𝑦 = 𝑡 |
| 8 | 7, 4 | wff-forall 8 | . 2 wff ∀𝑦Ⅎ𝑥 𝑦 = 𝑡 |
| 9 | 3, 8 | wff-bi 104 | 1 wff (Ⅎt𝑥 𝑡 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝑡) |
| Colors of variables: wff objvar term class |
| This definition is referenced by: nfrzero-P8 1117 nfrvar-P8 1118 nfrsucc-P8 1119 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |