PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrex2-P7.10.VR12of2

Theorem ndnfrex2-P7.10.VR12of2 861
Description: ndnfrex2-P7.10 835 with 2 variable restrictions.

Neither '𝑥' nor '𝑦' can occur in '𝛾'.

Hypothesis
Ref Expression
ndnfrex2-P7.10.VR12of2.1 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
ndnfrex2-P7.10.VR12of2 (𝛾 → Ⅎ𝑥𝑦𝜑)
Distinct variable group:   𝛾,𝑥,𝑦

Proof of Theorem ndnfrex2-P7.10.VR12of2
StepHypRef Expression
1 ndnfrv-P7.1 826 . 2 𝑥𝛾
2 ndnfrv-P7.1 826 . 2 𝑦𝛾
3 ndnfrex2-P7.10.VR12of2.1 . 2 (𝛾 → Ⅎ𝑥𝜑)
41, 2, 3ndnfrex2-P7.10 835 1 (𝛾 → Ⅎ𝑥𝑦𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrex2-P7.10.RC  881
  Copyright terms: Public domain W3C validator