PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrleq-P7.11.RC

Theorem ndnfrleq-P7.11.RC 882
Description: Inference Form of ndnfrleq-P7.11 836.
Hypothesis
Ref Expression
ndnfrleq-P7.11.RC.1 (𝜑𝜓)
Assertion
Ref Expression
ndnfrleq-P7.11.RC (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem ndnfrleq-P7.11.RC
StepHypRef Expression
1 ndnfrleq-P7.11.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32ndnfrleq-P7.11.VR 862 . 2 (⊤ → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
43ndtruee-P3.18 183 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrthm-P7  926  gennfr-P8  1079  exgennfr-P8  1085
  Copyright terms: Public domain W3C validator