| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndalli-P7.17.RC | |||
| Description: Inference form of ndalli-P7.17 842. † |
| Ref | Expression |
|---|---|
| ndalli-P7.17.RC.1 | ⊢ Ⅎ𝑦𝜑 |
| ndalli-P7.17.RC.2 | ⊢ [𝑦 / 𝑥]𝜑 |
| Ref | Expression |
|---|---|
| ndalli-P7.17.RC | ⊢ ∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndalli-P7.17.RC.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | ndalli-P7.17.RC.2 | . . . 4 ⊢ [𝑦 / 𝑥]𝜑 | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . 3 ⊢ (⊤ → [𝑦 / 𝑥]𝜑) |
| 4 | 1, 3 | ndalli-P7.17.VR1of2 864 | . 2 ⊢ (⊤ → ∀𝑥𝜑) |
| 5 | 4 | ndtruee-P3.18 183 | 1 ⊢ ∀𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 ∀wff-forall 8 ⊤wff-true 153 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: ndalli-P7.17.RC.VR 884 |
| Copyright terms: Public domain | W3C validator |