| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exgennfr-P8 | |||
| Description: Dual Form of gennfr-P8 1079. † |
| Ref | Expression |
|---|---|
| exgennfr-P8.1 | ⊢ (∃𝑥𝜑 → 𝜑) |
| Ref | Expression |
|---|---|
| exgennfr-P8 | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrex1-P7.8 833 | . 2 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 2 | exgennfr-P8.1 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | exi-P7.CL 952 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 4 | 2, 3 | rcp-NDBII0 239 | . . 3 ⊢ (∃𝑥𝜑 ↔ 𝜑) |
| 5 | 4 | ndnfrleq-P7.11.RC 882 | . 2 ⊢ (Ⅎ𝑥∃𝑥𝜑 ↔ Ⅎ𝑥𝜑) |
| 6 | 1, 5 | bimpf-P4.RC 532 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |