PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennfr-P8

Theorem gennfr-P8 1079
Description: General For ENF.
Hypothesis
Ref Expression
gennfr-P8.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
gennfr-P8 𝑥𝜑

Proof of Theorem gennfr-P8
StepHypRef Expression
1 ndnfrall1-P7.7 832 . 2 𝑥𝑥𝜑
2 alle-P7.CL 942 . . . 4 (∀𝑥𝜑𝜑)
3 gennfr-P8.1 . . . 4 (𝜑 → ∀𝑥𝜑)
42, 3rcp-NDBII0 239 . . 3 (∀𝑥𝜑𝜑)
54ndnfrleq-P7.11.RC 882 . 2 (Ⅎ𝑥𝑥𝜑 ↔ Ⅎ𝑥𝜑)
61, 5bimpf-P4.RC 532 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  exallnfr-P8  1092
  Copyright terms: Public domain W3C validator