PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrexgen-P8

Theorem nfrexgen-P8 1080
Description: Dual Form of nfrgen-P8 1076.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrexgen-P7 931 instead.

Hypotheses
Ref Expression
nfrexgen-P8.1 𝑥𝜑
nfrexgen-P8.2 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
nfrexgen-P8 (𝛾𝜑)

Proof of Theorem nfrexgen-P8
StepHypRef Expression
1 nfrexgen-P8.1 . 2 𝑥𝜑
2 nfrexgen-P8.2 . 2 (𝛾 → ∃𝑥𝜑)
31, 2nfrexgen-P7 931 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator