PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrexgen-P7

Theorem nfrexgen-P7 931
Description: Dual Form of nfrgen-P7 928.
Hypotheses
Ref Expression
nfrexgen-P7.1 𝑥𝜑
nfrexgen-P7.2 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
nfrexgen-P7 (𝛾𝜑)

Proof of Theorem nfrexgen-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfrexgen-P7.1 . . . . 5 𝑥𝜑
21psubnfrv-P7 927 . . . 4 ([𝑦 / 𝑥]𝜑𝜑)
32rcp-NDBIEF0 240 . . 3 ([𝑦 / 𝑥]𝜑𝜑)
43rcp-NDIMP0addall 207 . 2 (𝛾 → ([𝑦 / 𝑥]𝜑𝜑))
5 nfrexgen-P7.2 . 2 (𝛾 → ∃𝑥𝜑)
64, 5ndexew-P7.VR123of3 874 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrexgen-P7.CL  932  nfrexgen-P8  1080  nfrexgen-P8.VR  1081  nfrexgen-P8.RC  1082
  Copyright terms: Public domain W3C validator