PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exallnfr-P8

Theorem exallnfr-P8 1092
Description: Converse of nfrexall-P8.CL 1090.
Hypothesis
Ref Expression
exallnfr-P8.1 (∃𝑥𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
exallnfr-P8 𝑥𝜑

Proof of Theorem exallnfr-P8
StepHypRef Expression
1 exi-P7.CL 952 . . 3 (𝜑 → ∃𝑥𝜑)
2 exallnfr-P8.1 . . 3 (∃𝑥𝜑 → ∀𝑥𝜑)
31, 2syl-P3.24.RC 260 . 2 (𝜑 → ∀𝑥𝜑)
43gennfr-P8 1079 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator