PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idempotall-P8

Theorem idempotall-P8 1093
Description: Idempotency Law for '𝑥'.
Assertion
Ref Expression
idempotall-P8 (∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem idempotall-P8
StepHypRef Expression
1 alle-P7.CL 942 . 2 (∀𝑥𝑥𝜑 → ∀𝑥𝜑)
2 ndnfrall1-P7.7 832 . . 3 𝑥𝑥𝜑
32nfrgen-P7.CL 930 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
41, 3rcp-NDBII0 239 1 (∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator