PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrexall-P8

Theorem nfrexall-P8 1086
Description: Combining of nfrgen-P8 1076 and nfrexgen-P8 1080.
Hypotheses
Ref Expression
nfrexall-P8.1 𝑥𝜑
nfrexall-P8.2 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
nfrexall-P8 (𝛾 → ∀𝑥𝜑)

Proof of Theorem nfrexall-P8
StepHypRef Expression
1 nfrexall-P8.2 . 2 (𝛾 → ∃𝑥𝜑)
2 nfrexall-P8.1 . . 3 𝑥𝜑
32nfrexgen-P7.CL 932 . 2 (∃𝑥𝜑𝜑)
42nfrgen-P7.CL 930 . 2 (𝜑 → ∀𝑥𝜑)
51, 3, 4dsyl-P3.25.RC 262 1 (𝛾 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrexall-P8.VR  1087  nfrexall-P8.RC  1088  nfrexall-P8.CL  1090
  Copyright terms: Public domain W3C validator