| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnfrex1-P7.8 | |||
| Description: Natural Deduction:
Effective Non-Freeness Rule 8.
'𝑥' is effectively not free in '∃𝑥𝜑' (since any '𝑥' appearing '𝜑' will be bound). |
| Ref | Expression |
|---|---|
| ndnfrex1-P7.8 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrex1-P6 742 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: allnegex-P7-L1 956 allnegex-P7-L2 957 dfnfreealtif-P7 964 qimeqallhalf-P7 975 axL11ex-P7 981 exnegallint-P7 1047 qimeqex-P7-L1 1054 qimeqex-P7-L2 1055 exgennfr-P8 1085 idempotex-P8 1094 idempotallex-P8 1095 idempotexnex-P8 1098 idempotallnex-P8 1099 |
| Copyright terms: Public domain | W3C validator |