| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrex1-P6 | |||
| Description: ENF Over Existential
Quantifier (same variable).
See nfrex1w-P6 693 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| nfrex1-P6 | ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genex-P6 731 | . 2 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | 1 | gennfr-P6 734 | 1 ⊢ Ⅎ𝑥∃𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L10 27 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: spliteq-P6 776 splitelof-P6 778 psubex1-P6 794 nfrnfr-P6 821 ndnfrex1-P7.8 833 |
| Copyright terms: Public domain | W3C validator |