PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrex1-P6

Theorem nfrex1-P6 742
Description: ENF Over Existential Quantifier (same variable).

See nfrex1w-P6 693 for a version that requires only FOL axioms.

Assertion
Ref Expression
nfrex1-P6 𝑥𝑥𝜑

Proof of Theorem nfrex1-P6
StepHypRef Expression
1 genex-P6 731 . 2 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
21gennfr-P6 734 1 𝑥𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L10 27
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  spliteq-P6  776  splitelof-P6  778  psubex1-P6  794  nfrnfr-P6  821  ndnfrex1-P7.8  833
  Copyright terms: Public domain W3C validator