PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrnfr-P6

Theorem nfrnfr-P6 821
Description: ENF Over ENF Predicate.

Interpreted semantically, this says that the effective non-freeness predicate does not depend on the value assigned to the indicated variable, '𝑥'. This means effective non-freeness is a property of a WFF that will either be true for every '𝑥' assignment or false for every '𝑥' assignment. We expect this since ENF is a property that we should be able to determine grammatically.

Assertion
Ref Expression
nfrnfr-P6 𝑥𝑥𝜑

Proof of Theorem nfrnfr-P6
StepHypRef Expression
1 nfrex1-P6 742 . . 3 𝑥𝑥𝜑
2 nfrall1-P6 741 . . 3 𝑥𝑥𝜑
31, 2nfrim-P6 689 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
4 dfnfreealt-P6 683 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
54nfrleq-P6 687 . 2 (Ⅎ𝑥𝑥𝜑 ↔ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑))
63, 5bimpr-P4.RC 534 1 𝑥𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrnfr-P7.12  837
  Copyright terms: Public domain W3C validator