PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndalli-P6

Theorem ndalli-P6 822
Description: Natural Deduction Form of Universal Quantifier Introduction.
Hypotheses
Ref Expression
ndalli-P6.1 𝑦𝛾
ndalli-P6.2 𝑦𝜑
ndalli-P6.3 (𝛾 → [𝑦 / 𝑥]𝜑)
Assertion
Ref Expression
ndalli-P6 (𝛾 → ∀𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndalli-P6
StepHypRef Expression
1 ndalli-P6.1 . . 3 𝑦𝛾
2 ndalli-P6.3 . . 3 (𝛾 → [𝑦 / 𝑥]𝜑)
31, 2allic-P6 745 . 2 (𝛾 → ∀𝑦[𝑦 / 𝑥]𝜑)
4 ndalli-P6.2 . . . 4 𝑦𝜑
54cbvallpsub-P6 768 . . 3 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
65bisym-P3.33b.RC 299 . 2 (∀𝑦[𝑦 / 𝑥]𝜑 ↔ ∀𝑥𝜑)
73, 6subimr2-P4.RC 543 1 (𝛾 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-imp 10  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndalli-P7.17  842
  Copyright terms: Public domain W3C validator