| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > allic-P6 | |||
| Description: Introduction of Universal
Quantifier as Consequent (non-freeness
condition).
This proposition is equivalent to the '∀' introduction rule in the natural deduction system. |
| Ref | Expression |
|---|---|
| allic-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| allic-P6.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| allic-P6 | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allic-P6.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfrgen-P6 733 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | allic-P6.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | alloverim-P5.RC.GEN 592 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| 5 | 2, 4 | syl-P3.24.RC 260 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: alloverim-P5.GENF 747 alloverimex-P5.GENF 748 cbvall-P6-L1 750 nfrall2d-P6 819 nfrex2d-P6 820 ndalli-P6 822 |
| Copyright terms: Public domain | W3C validator |