PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allic-P6

Theorem allic-P6 745
Description: Introduction of Universal Quantifier as Consequent (non-freeness condition).

This proposition is equivalent to the '' introduction rule in the natural deduction system.

Hypotheses
Ref Expression
allic-P6.1 𝑥𝜑
allic-P6.2 (𝜑𝜓)
Assertion
Ref Expression
allic-P6 (𝜑 → ∀𝑥𝜓)

Proof of Theorem allic-P6
StepHypRef Expression
1 allic-P6.1 . . 3 𝑥𝜑
21nfrgen-P6 733 . 2 (𝜑 → ∀𝑥𝜑)
3 allic-P6.2 . . 3 (𝜑𝜓)
43alloverim-P5.RC.GEN 592 . 2 (∀𝑥𝜑 → ∀𝑥𝜓)
52, 4syl-P3.24.RC 260 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  alloverim-P5.GENF  747  alloverimex-P5.GENF  748  cbvall-P6-L1  750  nfrall2d-P6  819  nfrex2d-P6  820  ndalli-P6  822
  Copyright terms: Public domain W3C validator