PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrall2d-P6

Theorem nfrall2d-P6 819
Description: ENF Over Universal Quantifier (different variable - deductive form).
Hypotheses
Ref Expression
nfrall2d-P6.1 𝑥𝛾
nfrall2d-P6.2 𝑦𝛾
nfrall2d-P6.3 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
nfrall2d-P6 (𝛾 → Ⅎ𝑥𝑦𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfrall2d-P6
StepHypRef Expression
1 nfrall2d-P6.1 . . 3 𝑥𝛾
2 nfrall2d-P6.2 . . . . 5 𝑦𝛾
3 nfrall2d-P6.3 . . . . . 6 (𝛾 → Ⅎ𝑥𝜑)
4 nfrgencl-L6 811 . . . . . 6 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
53, 4syl-P3.24.RC 260 . . . . 5 (𝛾 → (𝜑 → ∀𝑥𝜑))
62, 5alloverim-P5.GENF 747 . . . 4 (𝛾 → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
7 allcomm-P6 739 . . . . 5 (∀𝑦𝑥𝜑 ↔ ∀𝑥𝑦𝜑)
87subimr-P3.40b.RC 328 . . . 4 ((∀𝑦𝜑 → ∀𝑦𝑥𝜑) ↔ (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
96, 8subimr2-P4.RC 543 . . 3 (𝛾 → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
101, 9allic-P6 745 . 2 (𝛾 → ∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
11 gennfrcl-L6 812 . 2 (∀𝑥(∀𝑦𝜑 → ∀𝑥𝑦𝜑) → Ⅎ𝑥𝑦𝜑)
1210, 11syl-P3.24.RC 260 1 (𝛾 → Ⅎ𝑥𝑦𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrall2-P7.9  834
  Copyright terms: Public domain W3C validator