| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrbid-P6 | |||
| Description: ENF Over Biconditional (deductive form). |
| Ref | Expression |
|---|---|
| nfrbid-P6.1 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| nfrbid-P6.2 | ⊢ (𝛾 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrbid-P6 | ⊢ (𝛾 → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrbid-P6.1 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥𝜑) | |
| 2 | nfrbid-P6.2 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥𝜓) | |
| 3 | 1, 2 | nfrimd-P6 815 | . . 3 ⊢ (𝛾 → Ⅎ𝑥(𝜑 → 𝜓)) |
| 4 | 2, 1 | nfrimd-P6 815 | . . 3 ⊢ (𝛾 → Ⅎ𝑥(𝜓 → 𝜑)) |
| 5 | 3, 4 | nfrandd-P6 816 | . 2 ⊢ (𝛾 → Ⅎ𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 6 | dfbi-P3.47 358 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 7 | 6 | nfrleq-P6 687 | . . 3 ⊢ (Ⅎ𝑥(𝜑 ↔ 𝜓) ↔ Ⅎ𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 8 | 7 | bisym-P3.33b.RC 299 | . 2 ⊢ (Ⅎ𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 9 | 5, 8 | subimr2-P4.RC 543 | 1 ⊢ (𝛾 → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: ndnfrbi-P7.6 831 |
| Copyright terms: Public domain | W3C validator |