PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrbid-P6

Theorem nfrbid-P6 818
Description: ENF Over Biconditional (deductive form).
Hypotheses
Ref Expression
nfrbid-P6.1 (𝛾 → Ⅎ𝑥𝜑)
nfrbid-P6.2 (𝛾 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrbid-P6 (𝛾 → Ⅎ𝑥(𝜑𝜓))

Proof of Theorem nfrbid-P6
StepHypRef Expression
1 nfrbid-P6.1 . . . 4 (𝛾 → Ⅎ𝑥𝜑)
2 nfrbid-P6.2 . . . 4 (𝛾 → Ⅎ𝑥𝜓)
31, 2nfrimd-P6 815 . . 3 (𝛾 → Ⅎ𝑥(𝜑𝜓))
42, 1nfrimd-P6 815 . . 3 (𝛾 → Ⅎ𝑥(𝜓𝜑))
53, 4nfrandd-P6 816 . 2 (𝛾 → Ⅎ𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
6 dfbi-P3.47 358 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
76nfrleq-P6 687 . . 3 (Ⅎ𝑥(𝜑𝜓) ↔ Ⅎ𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
87bisym-P3.33b.RC 299 . 2 (Ⅎ𝑥((𝜑𝜓) ∧ (𝜓𝜑)) ↔ Ⅎ𝑥(𝜑𝜓))
95, 8subimr2-P4.RC 543 1 (𝛾 → Ⅎ𝑥(𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrbi-P7.6  831
  Copyright terms: Public domain W3C validator