PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfbi-P3.47

Theorem dfbi-P3.47 358
Description: Alternate Definition of ''.

The Chapter 2 definition of '' comes immediately from combining this definition with the previous definition of ''. That definition really isn't useful enough to state though.

Assertion
Ref Expression
dfbi-P3.47 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Proof of Theorem dfbi-P3.47
StepHypRef Expression
1 ndbief-P3.14.CL 249 . . 3 ((𝜑𝜓) → (𝜑𝜓))
2 ndbier-P3.15.CL 250 . . 3 ((𝜑𝜓) → (𝜓𝜑))
31, 2ndandi-P3.7 172 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
4 ndbii-P3.13.CL 248 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))
53, 4rcp-NDBII0 239 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverbi-P4.28-L3  468  oroverbi-P4.28b  469  imoverbi-P4.30-L2  478  imoverbi-P4.30b  479  biasandor-P4.34a  491  nfrbi-P6  691  nfrbid-P6  818
  Copyright terms: Public domain W3C validator