PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoverbi-P4.30b

Theorem imoverbi-P4.30b 479
Description: '' Left Distributes Over ''.
Assertion
Ref Expression
imoverbi-P4.30b ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))

Proof of Theorem imoverbi-P4.30b
StepHypRef Expression
1 imoverbi-P4.30-L2 478 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑 → (𝜓𝜒)) ∧ (𝜑 → (𝜒𝜓))))
2 imoverim-P4.30a 477 . . 3 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
3 imoverim-P4.30a 477 . . 3 ((𝜑 → (𝜒𝜓)) ↔ ((𝜑𝜒) → (𝜑𝜓)))
42, 3subandd-P3.42c.RC 344 . 2 (((𝜑 → (𝜓𝜒)) ∧ (𝜑 → (𝜒𝜓))) ↔ (((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))))
5 dfbi-P3.47 358 . . 3 (((𝜑𝜓) ↔ (𝜑𝜒)) ↔ (((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))))
65bisym-P3.33b.RC 299 . 2 ((((𝜑𝜓) → (𝜑𝜒)) ∧ ((𝜑𝜒) → (𝜑𝜓))) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
71, 4, 6dbitrns-P4.16.RC 429 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  solvesub-P6a  704  lemma-L6.02a  726
  Copyright terms: Public domain W3C validator