| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > imoverim-P4.30a | |||
| Description: '→' Distributes Over Itself . † |
| Ref | Expression |
|---|---|
| imoverim-P4.30a | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL2-P3.22.CL 256 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 2 | imoverim-P4.30-L1 476 | . 2 ⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: imoverbi-P4.30b 479 |
| Copyright terms: Public domain | W3C validator |