PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoverim-P4.30a

Theorem imoverim-P4.30a 477
Description: '' Distributes Over Itself .
Assertion
Ref Expression
imoverim-P4.30a ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem imoverim-P4.30a
StepHypRef Expression
1 axL2-P3.22.CL 256 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
2 imoverim-P4.30-L1 476 . 2 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
31, 2rcp-NDBII0 239 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoverbi-P4.30b  479
  Copyright terms: Public domain W3C validator