PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoverbi-P4.30-L2

Theorem imoverbi-P4.30-L2 478
Description: Lemma for imoverbi-P4.30b 479.
Assertion
Ref Expression
imoverbi-P4.30-L2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑 → (𝜓𝜒)) ∧ (𝜑 → (𝜒𝜓))))

Proof of Theorem imoverbi-P4.30-L2
StepHypRef Expression
1 dfbi-P3.47 358 . . 3 ((𝜓𝜒) ↔ ((𝜓𝜒) ∧ (𝜒𝜓)))
21subimr-P3.40b.RC 328 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → ((𝜓𝜒) ∧ (𝜒𝜓))))
3 imoverand-P4.29a 472 . 2 ((𝜑 → ((𝜓𝜒) ∧ (𝜒𝜓))) ↔ ((𝜑 → (𝜓𝜒)) ∧ (𝜑 → (𝜒𝜓))))
42, 3bitrns-P3.33c.RC 303 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑 → (𝜓𝜒)) ∧ (𝜑 → (𝜒𝜓))))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  imoverbi-P4.30b  479
  Copyright terms: Public domain W3C validator