Proof of Theorem imoverand-P4.29a
| Step | Hyp | Ref
| Expression |
| 1 | | sepimandr-P4.9a.CL 408 |
. 2
⊢ ((𝜑 → (𝜓 ∧
𝜒)) → ((𝜑
→ 𝜓) ∧ (𝜑 → 𝜒))) |
| 2 | | joinimandres-P4.8b.CL 402 |
. . 3
⊢ (((𝜑 → 𝜓) ∧
(𝜑 → 𝜒))
→ ((𝜑 ∧ 𝜑) → (𝜓 ∧
𝜒))) |
| 3 | | idempotand-P4.25a 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝜑) ↔
𝜑) |
| 4 | 3 | subiml-P3.40a.RC 326 |
. . . 4
⊢ (((𝜑 ∧ 𝜑) →
(𝜓 ∧ 𝜒))
↔ (𝜑 → (𝜓 ∧ 𝜒))) |
| 5 | 4 | rcp-NDBIEF0 240 |
. . 3
⊢ (((𝜑 ∧ 𝜑) →
(𝜓 ∧ 𝜒))
→ (𝜑 → (𝜓 ∧ 𝜒))) |
| 6 | 2, 5 | syl-P3.24.RC 260 |
. 2
⊢ (((𝜑 → 𝜓) ∧
(𝜑 → 𝜒))
→ (𝜑 → (𝜓 ∧ 𝜒))) |
| 7 | 1, 6 | rcp-NDBII0 239 |
1
⊢ ((𝜑 → (𝜓 ∧
𝜒)) ↔ ((𝜑
→ 𝜓) ∧ (𝜑 → 𝜒))) |