PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imoverand-P4.29a

Theorem imoverand-P4.29a 472
Description: '' Left Distributes Over ''.
Assertion
Ref Expression
imoverand-P4.29a ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem imoverand-P4.29a
StepHypRef Expression
1 sepimandr-P4.9a.CL 408 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
2 joinimandres-P4.8b.CL 402 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → ((𝜑𝜑) → (𝜓𝜒)))
3 idempotand-P4.25a 450 . . . . 5 ((𝜑𝜑) ↔ 𝜑)
43subiml-P3.40a.RC 326 . . . 4 (((𝜑𝜑) → (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))
54rcp-NDBIEF0 240 . . 3 (((𝜑𝜑) → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
62, 5syl-P3.24.RC 260 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
71, 6rcp-NDBII0 239 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  imoverbi-P4.30-L2  478
  Copyright terms: Public domain W3C validator