PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimandr-P4.9a.CL

Theorem sepimandr-P4.9a.CL 408
Description: Closed Form of sepimandr-P4.9a 406.
Assertion
Ref Expression
sepimandr-P4.9a.CL ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem sepimandr-P4.9a.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
21sepimandr-P4.9a 406 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  imoverand-P4.29a  472
  Copyright terms: Public domain W3C validator