PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimorl-P4.9b

Theorem sepimorl-P4.9b 409
Description: Separate Left Disjunction from Implication.
Hypothesis
Ref Expression
sepimorl-P4.9b.1 (𝛾 → ((𝜑𝜓) → 𝜒))
Assertion
Ref Expression
sepimorl-P4.9b (𝛾 → ((𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem sepimorl-P4.9b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . 5 ((𝛾𝜑) → 𝜑)
21ndorir-P3.11 176 . . . 4 ((𝛾𝜑) → (𝜑𝜓))
3 sepimorl-P4.9b.1 . . . . 5 (𝛾 → ((𝜑𝜓) → 𝜒))
43rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜑) → ((𝜑𝜓) → 𝜒))
52, 4ndime-P3.6 171 . . 3 ((𝛾𝜑) → 𝜒)
65rcp-NDIMI2 224 . 2 (𝛾 → (𝜑𝜒))
7 rcp-NDASM2of2 194 . . . . 5 ((𝛾𝜓) → 𝜓)
87ndoril-P3.10 175 . . . 4 ((𝛾𝜓) → (𝜑𝜓))
93rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜓) → ((𝜑𝜓) → 𝜒))
108, 9ndime-P3.6 171 . . 3 ((𝛾𝜓) → 𝜒)
1110rcp-NDIMI2 224 . 2 (𝛾 → (𝜓𝜒))
126, 11ndandi-P3.7 172 1 (𝛾 → ((𝜑𝜒) ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  sepimorl-P4.9b.RC  410  sepimorl-P4.9b.CL  411
  Copyright terms: Public domain W3C validator