Proof of Theorem sepimorl-P4.9b
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝛾 ∧ 𝜑) →
𝜑) |
| 2 | 1 | ndorir-P3.11 176 |
. . . 4
⊢ ((𝛾 ∧ 𝜑) →
(𝜑 ∨ 𝜓)) |
| 3 | | sepimorl-P4.9b.1 |
. . . . 5
⊢ (𝛾 → ((𝜑 ∨
𝜓) → 𝜒)) |
| 4 | 3 | rcp-NDIMP1add1 208 |
. . . 4
⊢ ((𝛾 ∧ 𝜑) →
((𝜑 ∨ 𝜓)
→ 𝜒)) |
| 5 | 2, 4 | ndime-P3.6 171 |
. . 3
⊢ ((𝛾 ∧ 𝜑) →
𝜒) |
| 6 | 5 | rcp-NDIMI2 224 |
. 2
⊢ (𝛾 → (𝜑 →
𝜒)) |
| 7 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝛾 ∧ 𝜓) →
𝜓) |
| 8 | 7 | ndoril-P3.10 175 |
. . . 4
⊢ ((𝛾 ∧ 𝜓) →
(𝜑 ∨ 𝜓)) |
| 9 | 3 | rcp-NDIMP1add1 208 |
. . . 4
⊢ ((𝛾 ∧ 𝜓) →
((𝜑 ∨ 𝜓)
→ 𝜒)) |
| 10 | 8, 9 | ndime-P3.6 171 |
. . 3
⊢ ((𝛾 ∧ 𝜓) →
𝜒) |
| 11 | 10 | rcp-NDIMI2 224 |
. 2
⊢ (𝛾 → (𝜓 →
𝜒)) |
| 12 | 6, 11 | ndandi-P3.7 172 |
1
⊢ (𝛾 → ((𝜑 →
𝜒) ∧ (𝜓
→ 𝜒))) |