PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDIMP1add1

Theorem rcp-NDIMP1add1 208
Description: ( 1 ) ( 1 2 ).
Hypothesis
Ref Expression
rcp-NDIMP1add1.1 (𝛾₁𝜑)
Assertion
Ref Expression
rcp-NDIMP1add1 ((𝛾₁𝛾₂) → 𝜑)

Proof of Theorem rcp-NDIMP1add1
StepHypRef Expression
1 rcp-NDIMP1add1.1 . 2 (𝛾₁𝜑)
21ndimp-P3.2 167 1 ((𝛾₁𝛾₂) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rcp-NDIMP1add2  212  axL1-P3.21  252  mae-P3.23  257  syl-P3.24  259  rae-P3.26  263  imsubl-P3.28a  267  imsubr-P3.28b  269  dnegi-P3.29  273  dnege-P3.30  276  mt-P3.32a  291  nmt-P3.32b  294  import-P3.34a  305  example-E3.2b  312  subbil-P3.41a-L1  331  subandl-P3.42a-L1  338  norel-P4.2a  367  norer-P4.2b  370  nandil-P4.3a  373  nandir-P4.3b  375  impoe-P4.4a  377  nimpoe-P4.4b  380  profeliml-P4.5a  385  profelimr-P4.5b  387  nprofeliml-P4.6a  389  nprofelimr-P4.6b  391  falseprofeliml-P4.7a  393  falseprofelimr-P4.7b  395  joinimandres-P4.8b  400  joinimor-P4.8c  403  sepimandr-P4.9a  406  sepimorl-P4.9b  409  dnegeint-P4.12  421  impime-P4  526  eqmiddle-P6  708  lemma-L7.02a-L1  943  axL4ex-P7  946  allnegex-P7-L1  956  qimeqex-P7-L1  1054
  Copyright terms: Public domain W3C validator