| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDIMP1add1 | |||
| Description: ( 1 ) ⇒ ( 1 ∧ 2 ). † |
| Ref | Expression |
|---|---|
| rcp-NDIMP1add1.1 | ⊢ (𝛾₁ → 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDIMP1add1 | ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDIMP1add1.1 | . 2 ⊢ (𝛾₁ → 𝜑) | |
| 2 | 1 | ndimp-P3.2 167 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: rcp-NDIMP1add2 212 axL1-P3.21 252 mae-P3.23 257 syl-P3.24 259 rae-P3.26 263 imsubl-P3.28a 267 imsubr-P3.28b 269 dnegi-P3.29 273 dnege-P3.30 276 mt-P3.32a 291 nmt-P3.32b 294 import-P3.34a 305 example-E3.2b 312 subbil-P3.41a-L1 331 subandl-P3.42a-L1 338 norel-P4.2a 367 norer-P4.2b 370 nandil-P4.3a 373 nandir-P4.3b 375 impoe-P4.4a 377 nimpoe-P4.4b 380 profeliml-P4.5a 385 profelimr-P4.5b 387 nprofeliml-P4.6a 389 nprofelimr-P4.6b 391 falseprofeliml-P4.7a 393 falseprofelimr-P4.7b 395 joinimandres-P4.8b 400 joinimor-P4.8c 403 sepimandr-P4.9a 406 sepimorl-P4.9b 409 dnegeint-P4.12 421 impime-P4 526 eqmiddle-P6 708 lemma-L7.02a-L1 943 axL4ex-P7 946 allnegex-P7-L1 956 qimeqex-P7-L1 1054 |
| Copyright terms: Public domain | W3C validator |