PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubl-P3.28a

Theorem imsubl-P3.28a 267
Description: Implication Substitution (left).
Hypothesis
Ref Expression
imsubl-P3.28a.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
imsubl-P3.28a (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem imsubl-P3.28a
StepHypRef Expression
1 imsubl-P3.28a.1 . . . 4 (𝛾 → (𝜑𝜓))
21rcp-NDIMP1add1 208 . . 3 ((𝛾 ∧ (𝜓𝜒)) → (𝜑𝜓))
3 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜓𝜒)) → (𝜓𝜒))
42, 3syl-P3.24 259 . 2 ((𝛾 ∧ (𝜓𝜒)) → (𝜑𝜒))
54rcp-NDIMI2 224 1 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  imsubl-P3.28a.RC  268  imsubd-P3.28c  271  subiml-P3.40a  325
  Copyright terms: Public domain W3C validator