PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imcomm-P3.27.RC

Theorem imcomm-P3.27.RC 266
Description: Inference Form of imcomm-P3.27 265.
Hypothesis
Ref Expression
imcomm-P3.27.RC.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imcomm-P3.27.RC (𝜓 → (𝜑𝜒))

Proof of Theorem imcomm-P3.27.RC
StepHypRef Expression
1 imcomm-P3.27.RC.1 . . . 4 (𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑 → (𝜓𝜒)))
32imcomm-P3.27 265 . 2 (⊤ → (𝜓 → (𝜑𝜒)))
43ndtruee-P3.18 183 1 (𝜓 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  qimeqex-P5-L2  611  lemma-L5.02a  653  lemma-L6.01a  724  lemma-L6.04a  749  dfpsubv-P7  977
  Copyright terms: Public domain W3C validator