| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqex-P5-L2 | |||
| Description: Lemma for qimeqex-P5 612. |
| Ref | Expression |
|---|---|
| qimeqex-P5-L2 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndime-P3.6.CL 244 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | |
| 2 | 1 | rcp-NDIMI2 224 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) |
| 3 | 2 | dalloverimex-P5.RC.GEN 607 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → ∃𝑥𝜓)) |
| 4 | 3 | imcomm-P3.27.RC 266 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qimeqex-P5 612 nfrim-P6 689 |
| Copyright terms: Public domain | W3C validator |