PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqex-P5-L2

Theorem qimeqex-P5-L2 611
Description: Lemma for qimeqex-P5 612.
Assertion
Ref Expression
qimeqex-P5-L2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem qimeqex-P5-L2
StepHypRef Expression
1 ndime-P3.6.CL 244 . . . 4 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
21rcp-NDIMI2 224 . . 3 (𝜑 → ((𝜑𝜓) → 𝜓))
32dalloverimex-P5.RC.GEN 607 . 2 (∀𝑥𝜑 → (∃𝑥(𝜑𝜓) → ∃𝑥𝜓))
43imcomm-P3.27.RC 266 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqex-P5  612  nfrim-P6  689
  Copyright terms: Public domain W3C validator