PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndime-P3.6.CL

Theorem ndime-P3.6.CL 244
Description: Closed Form of ndime-P3.6 171.
Assertion
Ref Expression
ndime-P3.6.CL ((𝜑 ∧ (𝜑𝜓)) → 𝜓)

Proof of Theorem ndime-P3.6.CL
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 ((𝜑 ∧ (𝜑𝜓)) → 𝜑)
2 rcp-NDASM2of2 194 . 2 ((𝜑 ∧ (𝜑𝜓)) → (𝜑𝜓))
31, 2ndime-P3.6 171 1 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  trueie-P4.22a  444  qimeqex-P5-L2  611
  Copyright terms: Public domain W3C validator