PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trueie-P4.22a

Theorem trueie-P4.22a 444
Description: '' Introduction and Elimination (closed form).
Assertion
Ref Expression
trueie-P4.22a ((⊤ → 𝜑) ↔ 𝜑)

Proof of Theorem trueie-P4.22a
StepHypRef Expression
1 ndime-P3.6.CL 244 . . . 4 ((⊤ ∧ (⊤ → 𝜑)) → 𝜑)
21rcp-NDIMI2 224 . . 3 (⊤ → ((⊤ → 𝜑) → 𝜑))
32ndtruee-P3.18 183 . 2 ((⊤ → 𝜑) → 𝜑)
4 axL1-P3.21.CL 253 . 2 (𝜑 → (⊤ → 𝜑))
53, 4rcp-NDBII0 239 1 ((⊤ → 𝜑) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465  truthtbltimt-P4.36a  495  truthtbltimf-P4.36b  496  solvesub-P6a  704  lemma-L6.02a  726  psubnfr-P6  784
  Copyright terms: Public domain W3C validator