| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > trueie-P4.22a | |||
| Description: '⊤' Introduction and Elimination (closed form). † |
| Ref | Expression |
|---|---|
| trueie-P4.22a | ⊢ ((⊤ → 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndime-P3.6.CL 244 | . . . 4 ⊢ ((⊤ ∧ (⊤ → 𝜑)) → 𝜑) | |
| 2 | 1 | rcp-NDIMI2 224 | . . 3 ⊢ (⊤ → ((⊤ → 𝜑) → 𝜑)) |
| 3 | 2 | ndtruee-P3.18 183 | . 2 ⊢ ((⊤ → 𝜑) → 𝜑) |
| 4 | axL1-P3.21.CL 253 | . 2 ⊢ (𝜑 → (⊤ → 𝜑)) | |
| 5 | 3, 4 | rcp-NDBII0 239 | 1 ⊢ ((⊤ → 𝜑) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: oroverim-P4.28-L1 465 truthtbltimt-P4.36a 495 truthtbltimf-P4.36b 496 solvesub-P6a 704 lemma-L6.02a 726 psubnfr-P6 784 |
| Copyright terms: Public domain | W3C validator |