| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubnfr-P6 | |||
| Description: Proper Substitution
Applied to ENF Variable.
If '𝑥' is effectively not free in '𝜑', then replacing '𝑥' with some '𝑡' through proper substitution has no effect on '𝜑'. |
| Ref | Expression |
|---|---|
| psubnfr-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| psubnfr-P6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psub-D6.2 716 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | psubnfr-P6.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | qimeqallb-P6 701 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → ∀𝑥𝜑)) |
| 4 | axL6ex-P5 625 | . . . . . . 7 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 5 | 4 | thmeqtrue-P4.21a 442 | . . . . . 6 ⊢ (∃𝑥 𝑥 = 𝑦 ↔ ⊤) |
| 6 | 2 | qremall-P6 722 | . . . . . 6 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| 7 | 5, 6 | subimd-P3.40c.RC 330 | . . . . 5 ⊢ ((∃𝑥 𝑥 = 𝑦 → ∀𝑥𝜑) ↔ (⊤ → 𝜑)) |
| 8 | trueie-P4.22a 444 | . . . . 5 ⊢ ((⊤ → 𝜑) ↔ 𝜑) | |
| 9 | 3, 7, 8 | dbitrns-P4.16.RC 429 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
| 10 | 9 | subimr-P3.40b.RC 328 | . . 3 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → 𝜑)) |
| 11 | 10 | suballinf-P5 594 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → 𝜑)) |
| 12 | qimeqallbv-P5 620 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑦𝜑)) | |
| 13 | axL6ex-P5 625 | . . . . 5 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 14 | 13 | thmeqtrue-P4.21a 442 | . . . 4 ⊢ (∃𝑦 𝑦 = 𝑡 ↔ ⊤) |
| 15 | qremallv-P5 656 | . . . 4 ⊢ (∀𝑦𝜑 ↔ 𝜑) | |
| 16 | 14, 15 | subimd-P3.40c.RC 330 | . . 3 ⊢ ((∃𝑦 𝑦 = 𝑡 → ∀𝑦𝜑) ↔ (⊤ → 𝜑)) |
| 17 | 12, 16, 8 | dbitrns-P4.16.RC 429 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → 𝜑) ↔ 𝜑) |
| 18 | 1, 11, 17 | dbitrns-P4.16.RC 429 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psubnfr-P6.VR 785 psuball1-P6 793 psubex1-P6 794 |
| Copyright terms: Public domain | W3C validator |