PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubnfr-P6

Theorem psubnfr-P6 784
Description: Proper Substitution Applied to ENF Variable.

If '𝑥' is effectively not free in '𝜑', then replacing '𝑥' with some '𝑡' through proper substitution has no effect on '𝜑'.

Hypothesis
Ref Expression
psubnfr-P6.1 𝑥𝜑
Assertion
Ref Expression
psubnfr-P6 ([𝑡 / 𝑥]𝜑𝜑)

Proof of Theorem psubnfr-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 psubnfr-P6.1 . . . . . 6 𝑥𝜑
32qimeqallb-P6 701 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → ∀𝑥𝜑))
4 axL6ex-P5 625 . . . . . . 7 𝑥 𝑥 = 𝑦
54thmeqtrue-P4.21a 442 . . . . . 6 (∃𝑥 𝑥 = 𝑦 ↔ ⊤)
62qremall-P6 722 . . . . . 6 (∀𝑥𝜑𝜑)
75, 6subimd-P3.40c.RC 330 . . . . 5 ((∃𝑥 𝑥 = 𝑦 → ∀𝑥𝜑) ↔ (⊤ → 𝜑))
8 trueie-P4.22a 444 . . . . 5 ((⊤ → 𝜑) ↔ 𝜑)
93, 7, 8dbitrns-P4.16.RC 429 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
109subimr-P3.40b.RC 328 . . 3 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡𝜑))
1110suballinf-P5 594 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑦(𝑦 = 𝑡𝜑))
12 qimeqallbv-P5 620 . . 3 (∀𝑦(𝑦 = 𝑡𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → ∀𝑦𝜑))
13 axL6ex-P5 625 . . . . 5 𝑦 𝑦 = 𝑡
1413thmeqtrue-P4.21a 442 . . . 4 (∃𝑦 𝑦 = 𝑡 ↔ ⊤)
15 qremallv-P5 656 . . . 4 (∀𝑦𝜑𝜑)
1614, 15subimd-P3.40c.RC 330 . . 3 ((∃𝑦 𝑦 = 𝑡 → ∀𝑦𝜑) ↔ (⊤ → 𝜑))
1712, 16, 8dbitrns-P4.16.RC 429 . 2 (∀𝑦(𝑦 = 𝑡𝜑) ↔ 𝜑)
181, 11, 17dbitrns-P4.16.RC 429 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-true 153  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubnfr-P6.VR  785  psuball1-P6  793  psubex1-P6  794
  Copyright terms: Public domain W3C validator