PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubnfr-P6.VR

Theorem psubnfr-P6.VR 785
Description: Variable Restricted Form of psubnfr-P6 784.

'𝑥' cannot occur in '𝜑'.

Assertion
Ref Expression
psubnfr-P6.VR ([𝑡 / 𝑥]𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem psubnfr-P6.VR
StepHypRef Expression
1 nfrv-P6 686 . 2 𝑥𝜑
21psubnfr-P6 784 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubsplitelof-P6  801  psubvar2-P6  803  psubzero-P6  804
  Copyright terms: Public domain W3C validator