| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubvar2-P6 | |||
| Description: Proper Substitution
Applied to Atomic Term (different variable).
'𝑎' is distinct from all other variables. |
| Ref | Expression |
|---|---|
| psubvar2-P6 | ⊢ ([𝑡 / 𝑥] 𝑎 = 𝑦 ↔ 𝑎 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubnfr-P6.VR 785 | 1 ⊢ ([𝑡 / 𝑥] 𝑎 = 𝑦 ↔ 𝑎 = 𝑦) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |