PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubthm-P6

Theorem psubthm-P6 786
Description: Proper Substitution Applied to a Theorem.
Hypothesis
Ref Expression
psubthm-P6.1 𝜑
Assertion
Ref Expression
psubthm-P6 [𝑡 / 𝑥]𝜑

Proof of Theorem psubthm-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psubthm-P6.1 . . . . . 6 𝜑
21rcp-NDIMP0addall 207 . . . . 5 (𝑥 = 𝑦𝜑)
32ax-GEN 15 . . . 4 𝑥(𝑥 = 𝑦𝜑)
43rcp-NDIMP0addall 207 . . 3 (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
54ax-GEN 15 . 2 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
6 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
75, 6bimpr-P4.RC 534 1 [𝑡 / 𝑥]𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-psub-D6.2 716
This theorem is referenced by:  psubim-P6-L2  790
  Copyright terms: Public domain W3C validator