PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubim-P6-L2

Theorem psubim-P6-L2 790
Description: Lemma for psubim-P6 791.
Assertion
Ref Expression
psubim-P6-L2 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))

Proof of Theorem psubim-P6-L2
StepHypRef Expression
1 impoe-P4.4a.CL 379 . . . . . 6 𝜑 → (𝜑𝜓))
21psubthm-P6 786 . . . . 5 [𝑡 / 𝑥](¬ 𝜑 → (𝜑𝜓))
3 psubim-P6-L1 789 . . . . 5 ([𝑡 / 𝑥](¬ 𝜑 → (𝜑𝜓)) → ([𝑡 / 𝑥] ¬ 𝜑 → [𝑡 / 𝑥](𝜑𝜓)))
42, 3rcp-NDIME0 228 . . . 4 ([𝑡 / 𝑥] ¬ 𝜑 → [𝑡 / 𝑥](𝜑𝜓))
5 psubneg-P6 788 . . . 4 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)
64, 5subiml2-P4.RC 541 . . 3 (¬ [𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜑𝜓))
7 axL1-P3.21.CL 253 . . . . 5 (𝜓 → (𝜑𝜓))
87psubthm-P6 786 . . . 4 [𝑡 / 𝑥](𝜓 → (𝜑𝜓))
9 psubim-P6-L1 789 . . . 4 ([𝑡 / 𝑥](𝜓 → (𝜑𝜓)) → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑𝜓)))
108, 9rcp-NDIME0 228 . . 3 ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑𝜓))
116, 10joinimandinc3-P4.RC 579 . 2 ((¬ [𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
12 imasor-P4.32a 487 . . 3 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) ↔ (¬ [𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓))
1312bisym-P3.33b.RC 299 . 2 ((¬ [𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
1411, 13subiml2-P4.RC 541 1 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubim-P6  791
  Copyright terms: Public domain W3C validator