Proof of Theorem psubim-P6-L2
| Step | Hyp | Ref
| Expression |
| 1 | | impoe-P4.4a.CL 379 |
. . . . . 6
⊢ (¬ 𝜑 → (𝜑 →
𝜓)) |
| 2 | 1 | psubthm-P6 786 |
. . . . 5
⊢ [𝑡 / 𝑥](¬ 𝜑 → (𝜑 →
𝜓)) |
| 3 | | psubim-P6-L1 789 |
. . . . 5
⊢ ([𝑡 / 𝑥](¬ 𝜑 → (𝜑 →
𝜓)) → ([𝑡 /
𝑥] ¬ 𝜑
→ [𝑡 / 𝑥](𝜑 → 𝜓))) |
| 4 | 2, 3 | rcp-NDIME0 228 |
. . . 4
⊢ ([𝑡 / 𝑥] ¬ 𝜑 → [𝑡 / 𝑥](𝜑 → 𝜓)) |
| 5 | | psubneg-P6 788 |
. . . 4
⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 /
𝑥]𝜑) |
| 6 | 4, 5 | subiml2-P4.RC 541 |
. . 3
⊢ (¬ [𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥](𝜑 → 𝜓)) |
| 7 | | axL1-P3.21.CL 253 |
. . . . 5
⊢ (𝜓 → (𝜑 →
𝜓)) |
| 8 | 7 | psubthm-P6 786 |
. . . 4
⊢ [𝑡 / 𝑥](𝜓 → (𝜑 →
𝜓)) |
| 9 | | psubim-P6-L1 789 |
. . . 4
⊢ ([𝑡 / 𝑥](𝜓 → (𝜑 →
𝜓)) → ([𝑡 /
𝑥]𝜓 →
[𝑡 / 𝑥](𝜑 → 𝜓))) |
| 10 | 8, 9 | rcp-NDIME0 228 |
. . 3
⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥](𝜑 → 𝜓)) |
| 11 | 6, 10 | joinimandinc3-P4.RC 579 |
. 2
⊢ ((¬ [𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) |
| 12 | | imasor-P4.32a 487 |
. . 3
⊢ (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) ↔ (¬
[𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓)) |
| 13 | 12 | bisym-P3.33b.RC 299 |
. 2
⊢ ((¬ [𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| 14 | 11, 13 | subiml2-P4.RC 541 |
1
⊢ (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) |