PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubim-P6

Theorem psubim-P6 791
Description: Proper Substitution Over Implication.
Assertion
Ref Expression
psubim-P6 ([𝑡 / 𝑥](𝜑𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))

Proof of Theorem psubim-P6
StepHypRef Expression
1 psubim-P6-L1 789 . 2 ([𝑡 / 𝑥](𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
2 psubim-P6-L2 790 . 2 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
31, 2rcp-NDBII0 239 1 ([𝑡 / 𝑥](𝜑𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psuband-P6  792
  Copyright terms: Public domain W3C validator