| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubim-P6 | |||
| Description: Proper Substitution Over Implication. |
| Ref | Expression |
|---|---|
| psubim-P6 | ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubim-P6-L1 789 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | |
| 2 | psubim-P6-L2 790 | . 2 ⊢ (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 → 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ([𝑡 / 𝑥](𝜑 → 𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psuband-P6 792 |
| Copyright terms: Public domain | W3C validator |