PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psuband-P6

Theorem psuband-P6 792
Description: Proper Substitution Over Conjunction.
Assertion
Ref Expression
psuband-P6 ([𝑡 / 𝑥](𝜑𝜓) ↔ ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥]𝜓))

Proof of Theorem psuband-P6
StepHypRef Expression
1 andasim-P3.46a 356 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
21psubleq-P6 783 . . 3 ([𝑡 / 𝑥](𝜑𝜓) ↔ [𝑡 / 𝑥] ¬ (𝜑 → ¬ 𝜓))
3 psubneg-P6 788 . . 3 ([𝑡 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑡 / 𝑥](𝜑 → ¬ 𝜓))
4 psubim-P6 791 . . . . 5 ([𝑡 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥] ¬ 𝜓))
5 psubneg-P6 788 . . . . . 6 ([𝑡 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑡 / 𝑥]𝜓)
65subimr-P3.40b.RC 328 . . . . 5 (([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥] ¬ 𝜓) ↔ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓))
74, 6bitrns-P3.33c.RC 303 . . . 4 ([𝑡 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓))
87subneg-P3.39.RC 324 . . 3 (¬ [𝑡 / 𝑥](𝜑 → ¬ 𝜓) ↔ ¬ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓))
92, 3, 8dbitrns-P4.16.RC 429 . 2 ([𝑡 / 𝑥](𝜑𝜓) ↔ ¬ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓))
10 andasim-P3.46a 356 . . 3 (([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥]𝜓) ↔ ¬ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓))
1110bisym-P3.33b.RC 299 . 2 (¬ ([𝑡 / 𝑥]𝜑 → ¬ [𝑡 / 𝑥]𝜓) ↔ ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥]𝜓))
129, 11bitrns-P3.33c.RC 303 1 ([𝑡 / 𝑥](𝜑𝜓) ↔ ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥]𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-and 132  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubspliteq-P6  800  psubsplitelof-P6  801
  Copyright terms: Public domain W3C validator