PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubleq-P6

Theorem psubleq-P6 783
Description: Proper Substitution is Bound to Logical Equivalence.
Hypothesis
Ref Expression
psubleq-P6.1 (𝜑𝜓)
Assertion
Ref Expression
psubleq-P6 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)

Proof of Theorem psubleq-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-psub-D6.2 716 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 psubleq-P6.1 . . . . . 6 (𝜑𝜓)
32subimr-P3.40b.RC 328 . . . . 5 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜓))
43suballinf-P5 594 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
54subimr-P3.40b.RC 328 . . 3 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓)))
65suballinf-P5 594 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓)))
7 df-psub-D6.2 716 . . 3 ([𝑡 / 𝑥]𝜓 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓)))
87bisym-P3.33b.RC 299 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜓)) ↔ [𝑡 / 𝑥]𝜓)
91, 6, 8dbitrns-P4.16.RC 429 1 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-psub-D6.2 716
This theorem is referenced by:  psuband-P6  792  psuball2v-P6  796  psubex2v-P6  797  psuball2-P6  798  psubex2-P6  799  psubspliteq-P6  800  psubsplitelof-P6  801
  Copyright terms: Public domain W3C validator