| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubleq-P6 | |||
| Description: Proper Substitution is Bound to Logical Equivalence. |
| Ref | Expression |
|---|---|
| psubleq-P6.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| psubleq-P6 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psub-D6.2 716 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | psubleq-P6.1 | . . . . . 6 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | subimr-P3.40b.RC 328 | . . . . 5 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
| 4 | 3 | suballinf-P5 594 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 5 | 4 | subimr-P3.40b.RC 328 | . . 3 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 6 | 5 | suballinf-P5 594 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 7 | df-psub-D6.2 716 | . . 3 ⊢ ([𝑡 / 𝑥]𝜓 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
| 8 | 7 | bisym-P3.33b.RC 299 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) ↔ [𝑡 / 𝑥]𝜓) |
| 9 | 1, 6, 8 | dbitrns-P4.16.RC 429 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-psub-D6.2 716 |
| This theorem is referenced by: psuband-P6 792 psuball2v-P6 796 psubex2v-P6 797 psuball2-P6 798 psubex2-P6 799 psubspliteq-P6 800 psubsplitelof-P6 801 |
| Copyright terms: Public domain | W3C validator |